Position fine-tuning of caudal primary motoneurons in the zebrafish spinal cord.

نویسندگان

  • Mika Sato-Maeda
  • Masuo Obinata
  • Wataru Shoji
چکیده

In zebrafish embryos, each myotome is typically innervated by three primary motoneurons (PMNs): the caudal primary (CaP), middle primary (MiP) and rostral primary (RoP). PMN axons first exit the spinal cord through a single exit point located at the midpoint of the overlying somite, which is formed beneath the CaP cell body and is pioneered by the CaP axon. However, the placement of CaP cell bodies with respect to corresponding somites is poorly understood. Here, we determined the early events in CaP cell positioning using neuropilin 1a (nrp1a):gfp transgenic embryos in which CaPs were specifically labeled with GFP. CaP cell bodies first exhibit an irregular pattern in presence of newly formed corresponding somites and then migrate to achieve their proper positions by axonogenesis stages. CaPs are generated in excess compared with the number of somites, and two CaPs often overlap at the same position through this process. Next, we showed that CaP cell bodies remain in the initial irregular positions after knockdown of Neuropilin1a, a component of the class III semaphorin receptor. Irregular CaP position frequently results in aberrant double exit points of motor axons, and secondary motor axons form aberrant exit points following CaP axons. Its expression pattern suggests that sema3ab regulates the CaP position. Indeed, irregular CaP positions and exit points are induced by Sema3ab knockdown, whose ectopic expression can alter the position of CaP cell bodies. Results suggest that Semaphorin-Neuropilin signaling plays an important role in position fine-tuning of CaP cell bodies to ensure proper exit points of motor axons.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Myosin phosphatase Fine-tunes Zebrafish Motoneuron Position during Axonogenesis

During embryogenesis the spinal cord shifts position along the anterior-posterior axis relative to adjacent tissues. How motor neurons whose cell bodies are located in the spinal cord while their axons reside in adjacent tissues compensate for such tissue shift is not well understood. Using live cell imaging in zebrafish, we show that as motor axons exit from the spinal cord and extend through ...

متن کامل

Motoneuron fate specification revealed by patterned LIM homeobox gene expression in embryonic zebrafish.

In zebrafish, individual primary motoneurons can be uniquely identified by their characteristic cell body positions and axonal projection patterns. The fate of individual primary motoneurons remains plastic until just prior to axogenesis when they become committed to particular identities. We find that distinct primary motoneurons express particular combinations of LIM homeobox genes. Expressio...

متن کامل

Allometric growth of the trunk leads to the rostral shift of the pelvic fin in teleost fishes.

The pelvic fin position among teleost fishes has shifted rostrally during evolution, resulting in diversification of both behavior and habitat. We explored the developmental basis for the rostral shift in pelvic fin position in teleost fishes using zebrafish (abdominal pelvic fins) and Nile tilapia (thoracic pelvic fins). Cell fate mapping experiments revealed that changes in the distribution o...

متن کامل

Activity of Pectoral Fin Motoneurons during Two Swimming Gaits in the Larval 1 Zebrafish (danio Rerio) and Localization of Upstream Circuit Elements. 2 3

In many animals, limb movements transition between gait patterns with 32 increasing locomotor speed. While in for tetrapod systems, several well-developed 33 models in diverse taxa (e.g. cat, mouse, salamander, turtle) have been used to study 34 motor control of limbs and limb gaits, virtually nothing is known from fish species, 35 including zebrafish, a well studied model for axial motor contr...

متن کامل

Activity of pectoral fin motoneurons during two swimming gaits in the larval zebrafish (Danio rerio) and localization of upstream circuit elements.

In many animals, limb movements transition between gait patterns with increasing locomotor speed. While for tetrapod systems several well-developed models in diverse taxa (e.g., cat, mouse, salamander, turtle) have been used to study motor control of limbs and limb gaits, virtually nothing is known from fish species, including zebrafish, a well-studied model for axial motor control. Like tetrap...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Development

دوره 135 2  شماره 

صفحات  -

تاریخ انتشار 2008